Effect of Convalescent Plasma Therapy on Time to Clinical Improvement in Patients With Severe and Life-threatening COVID-19: A Randomized Clinical Trial | JAMA | JAMA Network

Key Points

During the early days of the Coronavirus pandemic from January 2020 through March 2020, there was confusion, misinformation and disinformation coming from the media, China, CDC, and the White House.  There were only two credible sources for information Dr. Anthony Fauci and Dr. Deborah Birx. Numerous polls indicated trust in Fauci and Birx.  The White House frequently gave contradictory statements during live broadcasts.


What is the effect of convalescent plasma therapy added to standard treatment, compared with standard treatment alone, on clinical outcomes in patients with severe or life-threatening coronavirus disease 2019 (COVID-19)?

This randomized clinical trial that included 103 patients and was terminated early, the hazard ratio for time to clinical improvement within 28 days in the convalescent plasma group vs the standard treatment group was 1.40 and was not statistically significant.

Meaning  Among patients with severe or life-threatening COVID-19, convalescent plasma therapy added to standard treatment did not significantly improve the time to clinical improvement within 28 days, although the trial was terminated early and may have been underpowered to detect a clinically important difference.









References
1.
Wang  D, Hu  B, Hu  C,  et al.  Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China.   JAMA. 2020;323(11):1061-1069. doi:10.1001/jama.2020.1585
ArticlePubMedGoogle ScholarCrossref
2.
Wu  Z, McGoogan  JM.  Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention.   JAMA. 2020;323(13):1239-1242. doi:10.1001/jama.2020.2648
ArticlePubMedGoogle ScholarCrossref
3.
Garraud  O, Heshmati  F, Pozzetto  B,  et al.  Plasma therapy against infectious pathogens, as of yesterday, today and tomorrow.   Transfus Clin Biol. 2016;23(1):39-44. doi:10.1016/j.tracli.2015.12.003PubMedGoogle ScholarCrossref
4.
Cheng  Y, Wong  R, Soo  YO,  et al.  Use of convalescent plasma therapy in SARS patients in Hong Kong.   Eur J Clin Microbiol Infect Dis. 2005;24(1):44-46. doi:10.1007/s10096-004-1271-9PubMedGoogle ScholarCrossref
5.
Yeh  KM, Chiueh  TS, Siu  LK,  et al.  Experience of using convalescent plasma for severe acute respiratory syndrome among healthcare workers in a Taiwan hospital.   J Antimicrob Chemother. 2005;56(5):919-922. doi:10.1093/jac/dki346PubMedGoogle ScholarCrossref
6.
Arabi  YM, Hajeer  AH, Luke  T,  et al.  Feasibility of using convalescent plasma immunotherapy for MERS-CoV infection, Saudi Arabia.   Emerg Infect Dis. 2016;22(9):1554-1561. doi:10.3201/eid2209.151164PubMedGoogle ScholarCrossref
7.
Kraft  CS, Hewlett  AL, Koepsell  S,  et al; Nebraska Biocontainment Unit and the Emory Serious Communicable Diseases Unit.  The use of TKM-100802 and convalescent plasma in 2 patients with Ebola virus disease in the United States.   Clin Infect Dis. 2015;61(4):496-502. doi:10.1093/cid/civ334PubMedGoogle ScholarCrossref
8.
Shen  C, Wang  Z, Zhao  F,  et al.  Treatment of 5 critically ill patients with COVID-19 with convalescent plasma.   JAMA. 2020;323(16):1582-1589. doi:10.1001/jama.2020.4783
ArticlePubMedGoogle ScholarCrossref
9.
Duan  K, Liu  B, Li  C,  et al.  Effectiveness of convalescent plasma therapy in severe COVID-19 patients.   Proc Natl Acad Sci U S A. 2020;117(17):9490-9496. doi:10.1073/pnas.2004168117PubMedGoogle ScholarCrossref
10.
Recommendations for Investigational COVID-19 Convalescent Plasma. US FDA. Published May 1, 2020. Accessed May 26, 2020. https://www.fda.gov/vaccines-blood-biologics/investigational-new-drug-ind-or-device-exemption-ide-process-cber/recommendations-investigational-covid-19-convalescent-plasma
11.
Position Paper on Use of Convalescent Plasma, Serum or Immune Globulin Concentrates as an Element in Response to an Emerging Virus. In: Network WBR, ed. 2017. Accessed April 18, 2020. https://www.who.int/bloodproducts/brn/en/
12.
National Health Commission of the People’s Republic of China. Covid-19 treatment plan (trial version 6). Accessed April 20, 2020. http://www.nhc.gov.cn/yzygj/s7653p/202002/8334a8326dd94d329df351d7da8aefc2/files/b218cfeb1bc54639af227f922bf6b817
13.
Wang  Y, Zhang  D, Du  G,  et al.  Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial.   Lancet. 2020;395(10236):1569-1578. doi:10.1016/S0140-6736(20)31022-9PubMedGoogle ScholarCrossref
14.
Kleinbaum  DG. Evaluating the proportional hazards assumption. In:  Survival Analysis. Statistics in the Health Sciences. Springer; 1996:183-184.
15.
Daily update on covid-19. National Health Commission of the People’s Republic of China. Accessed May 24, 2020. http://www.nhc.gov.cn/xcs/yqtb/202003/f01fc26a8a7b48debe194bd1277fdba3.shtml
16.
Annual SHOT (Serious Hazards of Transfusion) Report 2018. Published July 2019. Accessed May 25, 2020. https://www.shotuk.org/
17.
Beigel  JH, Aga  E, Elie-Turenne  MC,  et al; IRC005 Study Team.  Anti-influenza immune plasma for the treatment of patients with severe influenza A: a randomised, double-blind, phase 3 trial.   Lancet Respir Med. 2019;7(11):941-950. doi:10.1016/S2213-2600(19)30199-7PubMedGoogle ScholarCrossref
18.
Soo  YO, Cheng  Y, Wong  R,  et al.  Retrospective comparison of convalescent plasma with continuing high-dose methylprednisolone treatment in SARS patients.   Clin Microbiol Infect. 2004;10(7):676-678. doi:10.1111/j.1469-0691.2004.00956.xPubMedGoogle ScholarCrossref